
Letters 

Individual bead contribution to intrinsic viscosity of polymers 

The most used necklace model of iso- 
lated randomly coiled linear macro- 
molecule concentrates the frictional 
resistance in the Z + 1 identical beads 
each with a hydrodynamic radius a h. 
The translational resistance of each 
bead equals 67r ah r/s~rel- Here r/s is 
the viscosity of the solvent and ~rel 
is the difference between the velocity 
of the bead V* and the unperturbed 
solvent flow ~" at the location of the 
bead. The increase of shear stress 
caused by the presence of the macro- 
molecule is the consequence Of finite 
average friction forces on all the beads 
of the model. The beads are held to- 
gether by ideally elastic forces of the 
massless and frictionless links of r.m.s. 
length b 0 connecting subsequent beads. 
The average relative velocity and hence 
the force on each bead increases as its 
average distance from the centre of 
mass, or more exactly, from the centre 
of hydrodynamic resistance which 
moves with the same velocity as the un- 
perturbed solvent. 

According to Zimm ~ the contribu- 
tion of the model to intrinsic viscosity 
turns out to be: 
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where N is the Avogradro numb er, M is 
molecular weight, ~ is the velocity 
gradient, the indexj applies to the jth 
bead, A is the link force tensor, Xp is 
the pth eigen value of HA, H is the 
hydrodynamic interaction tensor, rp is 
the pth relaxation time. The formula- 

tion of [r/]z as a function of coordi- 
nates isbased on a flow field V= 
(qy, 0, 0). 

Such a model represents fairly well 
the molecular weight dependence of 
intrinsic viscosity of linear polymers 
in theta solvent in the limit of zero 
gradient, and the frequency depen- 
dence of it. But it yields a vanishing 
intrinsic viscosity for a single bead at 
any frequency, and for any molecular 
weight at very high frequency. Both 
results are in disagreement with 
observations. 

The second defect was removed by 
introduction of internal viscosity which 
measures the resistance of the coil 
against shape change 2. The mathemati- 
cally very handy formulation s in terms 
of normal modes of the model is not 
only not yet generally accepted but 
heavily opposed 4-6. Hence one is 
tempted to look after any effect which 
may make unnecessary the introduc- 
tion of internal viscosity. A great 
many efforts in this direction were 
made on the basis of correlation func- 
tion 7'8 or of additional forces between 
second and still farther apart neigh- 
bours 9. It turns out that in all cases a 
result at least superficially compatible 
with experimental data is only obtain- 
able if one introduces some kind of 
model rigidity. This makes the origi- 
nal formulation by Cerf 3 still more 
acceptable because it makes the mathe- 
matical handling so much easier and 
the results calculated seem to agree 
better with experimental data than 
those of all later suggestions. As will 
be shown in .this paper, a finite volume 
of the beads also introduces an intrin- 
sic viscosity term which does not 
vanish in the limit of very high 
frequency. 

Very few attempts were made for 
removing of the first defect ~°-~2. They 
were based on the fact that a rigid 
sphere by itself yields an intrinsic 
viscosity 2.5/# (p is density of the 
sphere) 13. This value is independent 
of gradient and frequency. In contrast 
to that, equation (1) yields a finite 
contribution of the sphere to intrinsic 
viscosity only in the case that it is loca- 
ted outside the xz plane going through 
the centre of hydrodynamic resistance 

of the system because only in such a 
case the contributing product of co- 
ordinate of the centre of the sphere 
with the x component of the relative 
velocity does not vanish. Since for a 
single sphere this centre coincides with 
the centre of the sphere the contribu- 
tion according to equation (1) is zero. 

As a consequence of the linearity of 
Stokes equation and the spherical 
shape ~6 the intrinsic contribution of 
the sphere to viscosity can be in first 
approximation simply superimposed on 
that of hydrodynamic frictional forces, 
i.e. on ~jFjx). The total contribution 
of the model with Z + 1 beads is 
2.5(Z + 1)/p. Since the molecular 
weight of the model is (Z + 1) times 
that of the bead the factor Z + 1 just 
cancels out. Hence one can rewrite 
equation (1) as: 

[7] = 2.5/p + [~]Z (2) 

The intrinsic viscosity of the necklace 
model is the sum of intrinsic viscosity 
of the single beads (Einstein term) and 
the conventional contribution of the 
necklace (Zimm term). 

Two important features follow from 
this formulation. Firstly the additional 
term 2.5/# is independent of molecular 
weight and hydrodynamic interaction. 
Secondly the term is independent of 
frequency so that one obtains a finite 
intrinsic viscosity even in the limit of 
high frequency where [17] Z vanishes. 
The socalled second Newtonian vis- 
cosity at w going to oo would read: 

[~]~ = 2.5/0 (3) 

It was hoped for a while that this 
result could eventually explain the 
experimentally observed finite values 
of the second Newtonian intrinsic vis- 
cosity without the introduction of 
internal viscosity or at least reduce its 
role. It turns out, however, that the 
experimentally observed [¢/-] ~ values 
of polystyrene in aroclor are about 
10 times too large, between 24 and 
17 cm3/g if one goes in molecular 
weight from 20 000 to 860 000 14 
Since the value of [rl] ~ caused by the 
beads alone is only about 2.5 it cannot 
explain the observed data although it 
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reduces by about 10% the contribution 
which has to be supplied by internal 
viscosity. Hence the concept of inter- 
nal viscosity needs to be retained. 

A few words are needed about the 
dependence of the term 2.5/p on 
hydrodynamic interaction. According 
to Burgers ~s the distortion of the 
linear flow ~ by the presence of the 
sphere which contributes to the shear 
stress and hence to intrinsic viscosity 
can be described by two force doublets. 
The first doublet consists of a positive 
and a negative force in the direction of 
x-axis at the points (0, - e ,  0) and 
(0, +e, 0), respectively. The second 
doublet has a positive and a negative 
force in the direction of y-axis at the 
points ( -e ,  0, 0) and (+e, 0, 0), res- 
pectively. The strength of the doublet, 
measured by the product eF, yields a 
flow modification proportional to A = 
5~ah3/12. Both doublets hence produce 
a change in shear stress: 

(7? - rl s)3, = 8 zrA rl s = (10a3/3)~r/s 

= 2.5 x (4~ra3h/3)~,rls (4) 

yielding the Einstein value [r/] = 2.5/p. 
If  one applies this method to any 

bead of the necklace model one has to 
take into account the actual gradient 

" a g  " " 

3' ~ ] )  at the posmon r i of the bead as 
it is modified by partialshielding of 
the flow inside the coil. By introducing 
vectors and tensors in the 3(Z + 1) 
dimensional space o f Z  + 1 beads one 
has for the velocity: 

7 "  = 7 - 2U0DoHA7 

- D0H Grad In ¢ (5) 

and from it for the gradient: 

"j'* = av*/ay = "~ - D H - -  
a2in~ 

axay 
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if one accepts that the shear component 
of the motion of beads as described by 
~'* is practically identical with the 
shear component of the shielded flow 
field of the liquid inside the coil. The 
space average of the gradient is the 
integral over the whole space of this 
equation multiplied by the distribution 
function ¢: 

(3;*)=3;'-DHf ~2¢ dV=~" (7) 
J Bxay  

since the volume integral of the second 
derivatives of ~ can be transformed 
into a surface integral of the first deriv- 

atives of ¢. The derivatives vanish 
faster than 1/r 2 with increasing radius 

"of the surface thus yielding a zero 
value for the integral. The average true 
velocity gradient at each bead equals 
the gradient of the unperturbed flow 
so that each bead yields the same 
Einstein type contribution 2.5/p to 
intrinsic viscosity. 

Equation (2) may need an additional 
correction. The contribution 2.5/0 
corresponds to a sphere which rotates 
with the same angular velocity as the 
volume element of the unperturbed 
liquid, ~ = (0, 0, - 'f12). In the poly- 
mer molecule each segment is so 
rigidly connected with its neighbours 
that such a rotation cannot take place 
if the molecule itself does not rotate 
with the volume element. In such a 
case one has to assume that also the 
beads representing the segments cannot 
rotate freely as assumed in Einstein's 
derivation. In the extreme case of 
fully blocked rotation the torque exert- 
ed on such a fixed sphere turns out to 
be16: 

T =  8~/ah3rot ~/2  g 

= 41ra3hrls (0, 0, --3;) (8) 

It is proportional to the true local 
gradient '~* which according to equa- 
tion (7), has ~ as its average value. The 
dissipated effect is the scalar product 
of the torque with the angular velocity 

of the unperturbed flow: 

dW/d t  = (7"/- r/s)'~ 2 = 2rra3hrls'~ 2 

_ 4rra3h 3 
r/s3~2 (9) 

3 2 

yielding to intrinsic viscosity the addi- 
tional term 1.5/p. Together with 
Einstein's term 2.5/p one has for the 
intrinsic viscosity of the incompressible 
sphere which cannot rotate with the 
liquidn: 

[n] =4.0/p (10) 

which has to replace the value of 2.5/p 
in equations (2) and (3) if the molecule 
does not rotate at all. Since a perfec- 
tly soft molecule rotates uniformly 
with the volume element such a correc- 
tion is not needed. Any deviation of 
coil from spherical shape and any coil 
rigidity however, introduces a non- 
uniform rotation which yields some 
addition to the value above 2.5 al- 
though less than 1.5 which corresponds 
to a complete fixation of the coil. In 

that which follows this excess contri- 
bution will be completely neglected. 

All these deviations were performed 
as if the radius of the beads is so much 
larger than that of solvent molecules 
that one can treat the hydrodynamic 
problem as that of a sphere in a con- 
tinuous medium without any slip of 
solvent on the surface of the sphere. 
In a conventional polymer solution 
the solvent molecules as a rule are not 
substantially smaller than the chain 
elements of the polymer. Surface slip 
may occur. The chain elements may 
even make so much easier the shear dis- 
placement of solvent molecules that 
their intrinsic contribution to viscosity 
becomes negative. 

Hence the values 2.5/0 has to be 
considered as ideal upper limit which 
may differ quite appreciably from the 
actual values. This means that although 
for polymer solutions one has to intro- 
duce a constant additive term in intrin- 
sic viscosity as shown in equations (2) 
and (11) its value is not a universal 
constant, i.e. 2.5/p.  Its maximum value 
is 2.5/0. But it may be smaller and 
even negative if the solvent molecules 
are large as compared to polymer chain 
groups and if their adhesion to the 
macromolecule is so weak that inter- 
face slip is facilitated. 

Low molecular weight solutions 
indeed show even negative values of 
steady state intrinsic viscosity 17. The 
same applies to low molecular weight 
normal paraffins in benzene or CCI 4 
(negative values for 10 or less C atoms 
in the chain) and in bromobenzene 
(negative values up to C12) Is. Poly- 
(oxyethylene glycols) in many sol- 
vents yield an intrinsic viscosityla: 

[7/] = A + bM a (11) 

with A = 2 cm3/g in water and metha- 
nol, 0.75 in dioxane, 0.5 in cyclo- 
hexane, and 0 in benzene and CC14. 
One has a large A, although smaller 
than 2.5, in solvents with small mole- 
cules which also possess enough affinity 
to the polymer so that the surface slip 
seems to be less likely to occur. With 
larger solvent molecules and less inter- 
action between them and the solute A 
decreases and even vanishes. In paraf- 
fins such constant additive term must 
be negative in order to yield the ob- 
served negative intrinsic viscosity in 
spite of the fact that the conventional 
coil contribution [r/] z is always 
positive. 

The addition of such a constant 
additive term does not affect appre- 
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ciably the intrinsic viscosity values at 
high molecular weight and zero fre- 
quency. But the situation becomes 
more critical at very high frequency 
where [7?] Z completely vanishes. A 
positive value of the observed second 
Newtonian viscosity in this region 
can be at least partially explained by 
the constant additive term if the term 
is positive. If  it is negative it even 
increases the demand for some other 
explanation, for instance by the non- 
vanishing term resulting from partial 
coil rigidity as described by internal 
coil viscosity. Hence this analysis 
seems to corroborate the need fcr the 
introduction of internal viscosity in 
order to explain the finite limiting 
value of intrinsic viscosity at high 
frequency shear flow field. 

A n t o n  Peter l in  
Polymers Division, 
National Bureau of Standards, 
Washington DC 20234, USA 
(Received 23 December 1976) 
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Effect of pressure upon the dissociation of the benzoyloxy radical 

The rate of  dissociation of benzoyl 
peroxide into radicals is decreased by 
application of high pressures 1'2. The 
benzoyloxy radicals first formed in 
the dissociation can dissociate further: 

C6H 5.CO . O . ~ C 6 H  5 . + CO 2 (1) 

but there appears to have been no 
study of the effect of pressure upon this 
reaction. 

The initiation processes in a radical 
polymerization initiated by benzoyl 
peroxide are: 

C6H 5 . C O . O .  + M 

C6H5 . CO. O . M .  (2) 

C6H 5 . + M ~ C6H 5 . M. (3) 

where M represents a molecule of the 
monomer. Ordinarily, the phenyl radi- 
cals produced in reaction (1) are sub- 
sequently consumed in reaction (3) 3. 
The rate at which phenyl radicals enter 
polymer to form end-groups is there- 
fore the rate of reaction (1); reaction 
(2) can be followed directly by measure- 
ment of the rate at which benzoyloxy 
end-groups are formed. The necessary 
end-group analyses can be performed 
by using suitably labelled benzoyl 
peroxide. Comparisons of the numbers 
of benzoyloxy and phenyl end-groups 
in polymers produced from solutions 
of a monomer in a diluent allow evalu- 

ation of k l / k2 ,  the magnitude of which 
depends markedly upon the nature of 
the monomer 4. 

IfAV~ and &V~ are the volumes of 
activation for reactions (1) and (2), 
(AV~ - AVe) could be evaluated from 
end-group analyses on polymers pro- 
duced at various pressures. It is expec- 
ted that AV~ would be positive and 
AV~ negative since reaction (1) is a 
dissociation and reaction (2) an asso- 
ciation. AV~ might be comparable 
with AV* for the dissociation of a mole- 
cule into radicals, and AV~ with AV* 
for the growth reaction in a radical 
polymerization. These views have been 
tested for the polymerizations of 
styrene and methyl methacrylate at 
60°C with toluene as diluent. 

Benzoyl peroxide was labelled in its 
rings with tritium and in its carboxyl 
groups with 14C; materials were assayed 
by scintillation counting in solution s . 
Low conversion polymerizations were 
performed in tubes of stainless steel 6'7 
at pressures up to 4 x 108 N/m 2 (4000 
bar) for styrene and up to 2 × 108 N/m 2 
for methyl methacrylate; corrections 
were made for the compressibilities of 
monomers and diluents, s There were 
no systematic differences between 
results for polymerizations at atmos- 
pheric pressure in steel and glass 
vessels, or between those with toluene 
and those with benzene (the diluent 
used in most of the previous studies). 

Pressure had a pronounced effect 

upon the balance between benzoyloxy 
and phenyl end-groups, as indicated by 
the typical results displayed in Figure 
1; from the slopes of such plots, values 
of k l / k  2 were found. Plots of 
In (k l / k2)  vs. pressure (see Figures 2 
and 3) show that (AVe-AVe) varies 
with pressure for both monomers but, 
from the initial slopes of these curves, 
the values are 21 +- 3 and 15 -+ 2 
cm3/mol for styrene and methyl 
methacrylate respectively as the 
monomers. 
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Figure I Variat ion of x ,  (number of 
benzoyloxy end-groups)/sum of numbers of 
benzoyloxy and phenyl end-groups), w i th  
molar concentration of monomeric methyl  
methacrylate for polymerizations at 60°C 
with to lueneasdi luent.  O, pressure = 0.3 x 
10 s N/m2; O, pressure = 1.5 x 10 s N/m 2 
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